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ABSTRACT 
Presents a new method for the numerical simulation of diffusion with phase-change. The method is able to 
handle hysteresis and finite-rate kinetics in the phase-change reaction. Such phenomena are frequent in 
solid-solid phase transitions. The model problem discussed concerns hydrogen migration and hydride 
precipitation in zirconium and its alloys, a problem of interest to the nuclear industry. With respect to 
previous ones, our method is the first to incorporate an implicit treatment of diffusion, thus avoiding mesh-
dependent stability limits in the time step. The CPU time can in this way be reduced by a factor of 10-20 in 
applications. Addresses, through numerical studies, convergence with respect to mesh refinement and 
reduction of the time step. Also reports on an application of the method to the simulation of laboratory 
experiments. Shows that the method is a powerful tool to deal with general phase-change problems, 
extendable to other physical systems. 

KEYWORDS Hydrogen migration Zirconium hydride Hydride blisters Phase-change problem Hysteresis Finite-
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INTRODUCTION 

The interaction of hydrogen with zirconium and its alloys leads to a physical and mathematical 
problem that serves as a paradigm to many other phase transitions, in particular to those occurring 
in the solid state. As an impurity, the mobility of Η atoms in Zr (a metal with hexagonal structure) 
is rather high, and its migration can be modelled accurately as a diffusion process. In the presence 
of a non-homogeneous thermal field, however, the thermal gradient appears under the form of a 
convective term added to the diffusion equations, causing higher concentrations to appear where 
the temperature is lower. This phenomenon is known as thermally-assisted diffusion. 

The solubility of Η in metallic Zr is nevertheless limited, and when it exceeds the (temperature 
dependent) terminal solid solubility (TSS) the hexagonal matrix undergoes a phase transition and 
a new phase precipitates: the zirconium hydride, ZrH1.5 (a face-centred cubic structure much 
richer in hydrogen)1. Up to this point, the typical structure of a Stefan problem can be identified 
as the existence of two phases (metal and hydride), with diffusion within each phase and the Η 
concentration discontinuous between them. In the case of the solidification of a pure substance, 
the variable obeying a diffusive process is the temperature and the discontinuous variable is the 
specific enthalpy (the height of the discontinuity being the latent heat). 

Solid-solid phase transitions involve other phenomena that can be viewed as generalizations of 
the Stefan problem. First, the TSS is experimentally observed to depend on whether the 
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concentration is increasing or decreasing. In other words, if the Η concentration in the metal is 
TSSP (TSS for precipitation) when hydrides begin to precipitate, in order to dissolve existing 
hydrides the concentration of Η in the metallic matrix must be lowered to TSSD (TSS for 
dissolution). As TSSD < TSSP this is a typical hysteresis phenomenon. The analogy with the 
solidification of a pure substance would imply that the solid→liquid transition occurs at a higher 
temperature than that of the liquid→solid. Hysteresis in the zirconium-hydrogen system has been 
observed in experiments of Erickson and Hardie2 and of Slattery3. It has been explained as a 
consequence of elastic-plastic accommodation between the metal and the hydride by Puls4 (see 
also5). 

In addition, in many solid-state phase transitions the kinetics of the reaction cannot be 
considered instantaneous. Both the metal→hydride and the hydride→metal reactions occur at a 
finite rate that is a function of the oversaturation or undersaturation of the metallic matrix. If the 
concentration Ca in the metal exceeds TSSP, then hydrides precipitate at a rate proportional to the 
difference Ca - TSSP, and if Ca is lower than TSSD existing hydrides dissolve at a rate 
proportional to TSSD - Ca. We refer only to what happens in the metallic (α-phase) because the 
concentration of Η in the hydride (δ-phase, a chemical compound) will be considered fixed, Cδ= 
16,000 ppm (parts per million expressed by weight). 

In this paper we describe a novel methodology for the numerical solution of phase-change 
problems, taking into account both hysteresis effects and finite-rate kinetics. Though we will 
apply it to hydrogen migration in zirconium and its alloys, it can be readily extended to several 
other phase-change problems. Our method, like many others available for the Stefan problem, 
incorporates an implicit treatment of the diffusion term, which is essential to avoid mesh-
dependent limits in the time-step size. 

THE MODEL PROBLEM: HYDROGEN MIGRATION IN Zr 

The basic model of thermally-assisted diffusion of hydrogen in zirconium alloys is based on the 
following assumptions6-8: 

• Hydrogen diffusion occurs only in the α-phase (metal matrix), according to linear transport 
equations. This simplification is introduced because the diffusion coefficient of the δ-phase 
(hydride) is much lower than that of the α-phase. 

• All quantities are considered macroscopically, and suitable spatial homogenization is 
performed. 

• The precipitation or dissolution of hydrides is a local phenomenon, viewed in the model as 
a variation of the volumetric fractions of the α- and δ-phases. 

As a result of the homogenization procedure we have, as functions of position and defined in all 
the domain, the total hydrogen concentration C, the hydrogen concentration in the α-and δ-phases 
Cα and Cδ, and the volumetric fraction of α-phase, va. These quantities are related by the lever 
ι 

In this way any point of the domain Ω can be in one of three possible states: pure α-phase 
(vα = 1), coexistence of phases (0 < vα < 1, similar to the mushy zone in binary alloys 
solidification) or pure δ-phase (vα = 0). The homogenization procedure also applies to the 
diffusion coefficient D, because precipitated hydrides obstruct the hydrogen flux. The effective 
diffusion coefficient is assumed to be equal to the diffusion coefficient multiplied by the 
volumetric fraction να. 

Finite-rate kinetics allows us to describe the phase-change with a differential equation9. The 
equation we present below is a generalization10 of the proposal of Marino", so as to consider all 
possible values for the volumetric fraction vα. 
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The previous considerations lead to the following statement of the problem: 
Given C ( · , 0), Cα (·, 0), (and therefore vα ( · , 0)) in Ω, find the evolution of these quantities at 

all times t > 0, according to the following governing equations: 

with: 

where Equation (2) is the conservation equation for hydrogen (notice the diffusion term div(Dva 
Cα), the convective-like term div(Dva Q*Ca T/(RT2)) and the volumetric source q), and 
Equation (3) is the local law for the precipitation-dissolution reaction (F is a measure of the 
oversaturation or undersaturation of the α-phase and thus vanishes if Ca lies between TSSD and 
TSSP; the exponent ρ depends on the geometric distribution of the precipitated hydrides). In 
principle, α could be different for precipitation and dissolution, but we have not considered this 
in the model because of lack of experimental data. 

The governing equations take a simpler form changing the variables as proposed by Byrne12. 
With 

and defining the following overlined variables 

the set of equations (2) and (3) takes the form: 

with: 

where we have assumed that the temperature field does not vary with time. 
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THE NUMERICAL METHOD 

The numerical method is based on a splitting of each time-step. In the first substep diffusion is 
allowed but preventing phase change from occurring, i.e. fixing the value of vα. In this way we 
obtain a new hydrogen distribution. In the second part we advance the precipitation-dissolution 
reaction pointwise, according to the kinetic equation and the phase diagram. This scheme could 
therefore be classified as a "middle point scheme" (see the recent review by Idelsohn et al.13; an 
example of this kind of scheme is that proposed by Pham14). 

First substep: diffusion 
Given the values , , (algorithmic approximations of the corresponding fields) at time 

tn, hydrogen diffusion is allowed during a lapse equal to At, but inhibiting phase change. Then, 
during this substep 

holds. Making use of the time derivative of the lever-rule equation (1), we can transform the 
conservation equation (6) into: 

where we have made use of the fact that does not depend on time. Taking as the unknown 
variable, this formulation allows for the use of a backward scheme for the diffusion part. This is a 
crucial improvement with respect to the forward scheme presented by Byrne9, which suffers from 
the well-known stability limits of forward treatments of diffusion problems. Our backward 
scheme reads: 

and the variational equation can be rapidly obtained by the standard Galerkin procedure: 

for every test function Ni, where h stands for the hydrogen flux through the boundary. In this way, 
we obtain a "predictor" value for the hydrogen concentration in solid solution, n

a
+1/2, and the 

corresponding new total hydrogen distribution, n + 1/2 given by 

In the general situation, the assumption made in this substep that vα is fixed is not consistent with 
the kinetic equation (7). The second substep is needed to consider phase-change processes. 

Second substep: phase-change 
The first substep is used to update the total concentration field, which will remain unchanged 

during this second substep as the evolution towards equilibrium will be performed locally; that is 
n + l = n + 1 / 2 . At any point, the change in total hydrogen concentration during the time step, 

Δ = n + 1 - n, affects, at the beginning of this second substep, only the α phase. Typically, this 
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will lead to concentrations + 1/2 in this phase that cause the precipitation or dissolution of 
hydrides, a process that is accounted for in this second substep. As the rate of change of the total 
concentration during the time step is known from the previous substep, we can combine the time 
derivative of Equation (1) with Equation (7) to get 

where the right-hand side is known. In other words, we have the following equation for α 

which will be solved at each node of the mesh, as it involves no spatial derivatives. In Equation 
(14) an explicit treatment of vα has been adopted; this does not lead to significant errors because, 
as Cδ is very large, vα changes much more slowly than Cα. The initial condition of this ordinary 
differential equation at each node is n + 1/2, and it must be solved during a time interval equal to 
a complete time step Δt. Moreover, since is a piecewise linear function of , this equation can 
be solved analytically. This is important because it prevents the appearance of spurious negative 
values of vα which would lead to negative effective diffusivities in the next step. 

To do this we separate all the possible conditions in the options for . As a simplification, our 
analysis of the possible cases will only consider the "predictor" values + 1/2 (note that this 
simplification is not essential to the method we are presenting). 

Remark 1: Notice that Equation (10) becomes ill-posed if vα takes the zero value somewhere 
within the domain. This corresponds to a pure δ-phase region that can indeed occur (both in our 
model and in laboratory experiments15). In the limit α2 → ∞ (instantaneous kinetics) the exact 
solutions to the model exhibit regions where vα is strictly zero9,16. If α2 < ∞ (finite-rate kinetics) 
vα tends asymptotically to zero in some regions and again Equation (10) becomes ill-posed. Of 
course this is not a problem of the model, as Equation (9) clearly states that the total concentration 
in such regions must remain fixed at the value Cδ and, as no α-phase is present, Cα is irrelevant. 
The problem comes from our use of the time derivative of the lever rule (1) to get Equation (10). 
This use is not correct if vα is zero. However, as this is essential to obtain a backward scheme (in 
fact, it is the key idea of our method), we avoid this difficulty imposing a lower bound ε for vα. 
In the detailed description of our algorithm presented below, it can be seen that we stop the phase-
change when reaches the value of ε. Our numerical experiments have conclusively shown that 
this modification of the model does not affect the solution whenever ε is lower than 10-2. 

Defining a nodal characteristic time τ= 1/ p-1α2, the second substep procedure to apply at 
each node is the following: 

Part 1: obtaining + 1: 
(1) Case 1 (precipitation): if + 1 > and > ε then 

• If > precipitation occurs during all the time-step, thus put 

• If < , it will also be assumed that precipitation takes place during the complete 
time-step, setting = TSSP, and then using (15). 

(2) Case 2 (dissolution): if + 1/2 < and < 1 then 
• If < , then 
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• If > it will be assumed that dissolution takes place during the complete time-
step, setting = , and then using (16). 

(3) Case 3 (no phase change): in all the other cases, no phase-change occurs and thus: 

Remark 2: In the case of instantaneous kinetics ( a → ∞ τ → 0), we use the same procedure 
as before replacing Equations (15) and (16) by the appropriate expressions in this limit (which are 
just the solubility values, and respectively). 

Part 2: obtaining vn
a
+ 1. The updated value for the nodal volumetric fraction comes from the 

lever rule as: 

Summary of the numerical procedure and comments 
Although the numerical procedure presented above might seem quite involved, it can be shown 

that it is in fact simple, physically based, and mimics the processes that actually occur. To advance 
one time-step, we begin by solving Equation (11), a classical finite element problem where a mass 
matrix and a diffusion matrix can be identified. Solving Equation (11) we are diffusing the 
hydrogen through α-phase as if the δ-phase did not react with it. This is physically sound, because 
our model assumes that no diffusion occurs in the δ-phase. It should be clear that any numerical 
method (finite differences, finite volumes, etc.) could be used to solve the diffusion problem. 
Next, we determine node by node whether the resulting concentrations in the α-phase would 
produce phase-change, and determine through Equations (15) to (17) what concentration will be 
left in the α-phase. This is again in correspondence with the physics of the model, as the chemical 
reaction between phases is considered locally. Finally, Equation (18) is just an algebraic relation 
to keep the volumetric fraction of α-phase updated. The main advantage of our splitting is that it 
allows for an implicit treatment of diffusive terms. The time-step is thus only limited by accuracy 
considerations (see "Numerical tests (one-dimensional)" and not by numerical instability, as 
happens with explicit schemes. 

NUMERICAL RESULTS: TESTS AND APPLICATION 

The investigation of the thermally-assisted diffusion of hydrogen in zirconium was initiated as a 
response to a demand from the nuclear industry. In 1983, a pressure tube failed at the Pickering 
unit 2. The failure was produced by the growth of a pure hydride zone (or blister) in a cold spot, 
caused by a pressure-tube calandria-tube contact17. For this reason, a reliable model and a proper 
scheme for numerical simulations were needed. Although materials used in the nuclear industry 
are zirconium alloys (Zry-2, Zry-4, Zr-2.5% Nb), as far as thermodiffusion is concerned, the 
behaviour of the system is the same as for pure zirconium. 

The numerical examples we will show here are taken from the work we have been carrying out 
for the experimental validation of the model and prediction of blister growth in pressure tubes of 
nuclear reactors10,15,18. In these numerical examples, we will pay special attention to the case of 
instantaneous kinetic, i.e. α2 → ∞, because we have found that finite-rate kinetics does not play 
an important role in the physical situations of interest. 
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We will consider thermodiffusion of hydrogen in Zry-2 and in Zr-2.5% Nb. In the way it was 
stated, the algorithm serves for multidimensional cases. For the sake of simplicity, the cases under 
consideration will be either one-dimensional or axisymmetrical. Regarding the parameters of the 
materials, both the diffusivity and the terminal solid solubilities are functions of temperature 
through Arrhenius-type laws: 

The heat of transport, Q*, is a constant independent of temperature. Table 1 summarizes Zry-2 and 
Zr-2.5% Nb material parameters. 

Table 1 Parameters of the material for zirconium alloys9,19,20. 

Frequency factor 
Activation energy 
Dissolution constant 
Precipitation constant 
Heat of mixing (dissolution) 
Heat of mixing (precipitation) 
Heat of transport 
Gas constant 

D0 
Q 
KD 

Kp 

HD 

HP 

Q* 
R 

Zry-2 

0.217 
36581 
51700 
31437 
85000 
31813 
25116 

Zr-2.5%Nb 

0.41 
38400 
60500 
41000 
33300 
28000 
20930 

8.314 

mm2/s 
J/mol 
ppm 
ppm 

J/mol 
J/mol 
J/mol 

J/Kmol 

Numerical tests (one-dimensional) 
We will first check the algorithm in a one-dimensional example, with instantaneous kinetics. 

The physical situation is taken from Sawatzky's experiments8. In those experiments, two 25mm 
rods of Zry-2 were charged with hydrogen, and a constant thermal gradient was imposed in the 
axial direction, by fixing the maximum and minimum temperature at the ends of the rod. 

To demonstrate the convergence of the algorithm, Figure 1 shows the superposition of the 
solutions computed on meshes with different refinements. The time simulated is one day. The 
initial condition is a homogeneous hydrogen concentration of 130ppm. Meshes with 100, 200 and 
500 equal linear elements were used. The temperatures at the ends of the rod are 130°C (left) and 
477°C (right). Thermally-assisted hydrogen diffusion in a two-phase regime has very particular 
characteristics as the reader can notice from the figure. The two-phase zone is situated on the left 
part, separated by a discontinuity in concentration (that spontaneously appears and moves with 
time; in Figure 1 its position is χ 15.8mm) from an α-phase region. The actual form of the 
concentration profile can be explained from the underlying physics, but that would exceed the 
scope of this paper. 

In Figure 2 we show the convergence rate with spatial mesh refinement, h. That figure is a log-
log plot of the mean square error (MSE) as a function of h, the length of the elements. To compute 
the MSE, we took as a reference the solution Cref computed in a 500-element mesh. MSE is 
defined as 

From Figure 2 a linear dependence of the L2-norm of the error with h can be estimated. The non-
monotonous dependence of the error with It is quite easy to explain: As the error is concentrated 
at discontinuities (see Figure 1), those meshes that provide better approximations near the 
discontinuities (i.e. those for which the discontinuity falls near the centre of an element) will lead 
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to smaller errors. This results in the wavy dependence shown in Figure 2. The «-values that 
correspond to these "fortunate" meshes would of course change if the error were measured at 
some other time, at which the discontinuities would have moved. 

The semi-implicit method presented here is unconditionally stable, there is no upper limit for 
the time-step. As expected, increasing the time-step leads to a less accurate numerical solution. In 
Figure 3 we plot the MSE of the final solution as a function of the time-step. The graph also shows 
the MSE for the fully-explicit algorithm(9,10, dashed lines). The stability limit for the explicit 
method is marked by the arrows. This figure shows the possibility of using longer time steps with 
our method than with that of 9, without an important loss of accuracy. For example, for the 200-
element mesh, if we accept an error twice the error as Δt → 0 for the given spatial discretization, 
then we can extend the time step by a factor of 30. The advantage of the implicit scheme grows as 
the mesh is refined, and also as we study processes with longer characteristic times, because our 
implicit method looses accuracy only when the time step becomes comparable with such times. In 
the application reported in the following section, our method consumes less CPU than the explicit 
one by a factor of at least 3. 

Finally, Figure 4 shows the effect of the kinetics on the hydrogen concentration profile at the 
end of the experiment (i.e. 34 days). The graph shows numerical solutions for evolution of the 
system. The parameter ρ chosen is 0, but we have observed that its value is unimportant, because 
the volumetric fraction va in this example is, everywhere, very close to 1. 

Application to a 2D experimental situation 
The physical situation corresponds to the experiment reported in Domizzi et al.15, in which the 

authors were involved. The experiment consisted in producing a cold spot in a hydrogen-charged 
(cylindrical) Zr-2.5% Nb specimen. In this condition, it was experimentally observed that a pure-
hydride region or blister grows in the cold zone. A detailed description of the experiment can be 
found in the reference. 
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The cold spot was produced by pressing an aluminium finger refrigerated by water on the 
central upper surface of the sample. The sample was, at the same time, kept over an aluminium 
block at 414°C. In this way, a very localized cold zone of ~200°C was created in a sample with an 
average temperature of 360-390°C. The thermal field, found solving an inverse problem from the 
experimental (readings at thermocouples) data, is shown in Figure 5. The samples had a radius of 
17.5mm and a thickness of 3.9mm, and the initial (homogeneous) hydrogen concentration was 
around 300ppm. In these conditions, experiments of blister growth were carried out with times 
ranging from 1 × 105 seconds (~ 1 day), to 6 × 105 seconds (~ 7 days). 

To solve the problem we used the meshes shown in Figure 6. These meshes have the required 
refinement in the cold zone for proper simulation of blister growth. The first mesh (STR), is a 
structured mesh with 9,000 bilinear elements, while the second one (UNSTR) has 1,921 linear 
triangular elements. With these meshes we computed the solution during 6 χ 105 sec, with a time 
step of 200 sec for mesh STR and of 100 sec for mesh UNSTR. The numerical solutions are 
plotted in Figure 7. 
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The numerical solutions of the problem show a very high hydrogen concentration in the cold 
zone (12,000-16,000ppm). As we move towards the hottest parts of the sample, the hydrogen 
concentration lowers rapidly to a value close to the initial concentration (200~400ppm). This 
calculated concentration field is the expected result, as the analysis of the exact solution of the 
model predicts a hydride blister (16,000 ppm) growing from the cold spot, followed by a 
discontinuity in the hydrogen concentration to a value close to the initial one16. Furthermore, 
these results are in qualitative and quantitative agreement with experimental data15. The 
numerical solution converges with mesh refinement, the results in Figure 7 are obtained with 
meshes refined so as to obtain the desired accuracy. 

Two discontinuity lines are present in the solution. One that separates the blister (pure δ-phase) 
from the coexistence zone (α + δ), and another that separates this coexistence zone from the solid 
solution (pure α-phase) zone. The saw-like aspect of the C = 250 and C = 300ppm contours in 
Figure 7b occurs because the decision concerning the boundaries of these zones is taken nodally 
(through the different cases in the phase-change section of the numerical method (Equations 
(15-17)). The method works equally well on both structured and unstructured meshes, and this 
saw-like aspect of the contours at discontinuities also occurs on structured meshes, though it 
cannot be appreciated in Figure 7a because the mesh is very fine. The mesh-following aspect of 
contours at discontinuities in structured meshes is illustrated in Figure 8 with a rather coarse 
mesh. The cure is obviously to refine the mesh if any of the discontinuities of interest is poorly 
approximated by the method. 

Finally, we should mention that one important effect of enlarging the time step is to smear out 
discontinuities. This can be observed comparing Figures 7a (Δt = 200sec) and 7b (Δt = 100 sec). 
In the latter the discontinuity in concentration at the blister boundary is more accurately predicted, 
not because the mesh is finer, but because the time step is smaller. 

FINAL REMARKS 

We have presented a numerical method for the solution of a phase-change problem that is able to 
handle several phenomena that appear in solid-solid line phase transitions. The model problem we 
have discussed applies to hydrogen migration and hydride precipitation in zirconium alloys, and 
is a slight generalization of that proposed by Byrne and Léger9. Previous methods for this 
problem9,12,16,19,21 did not consider such phenomena, with the exception of that of Reference 9. 
The advantage of our method with respect to that of Reference 9 is that we handle the diffusion 
implicitly. As is well known, this avoids the appearance of mesh-dependent stability limits in the 
step size. Moreover, as shown in Reference 10, the numerical solutions obtained with our scheme 
are free of small oscillations that appear when using the explicit method of Reference 9 in fine 
meshes (also used in Reference 20 and, by the authors in References 10 and 15. The gain in 
computer time of an implicit treatment of diffusion increases as the mesh is refined and as the 
simulated time is longer. The simulation of the experiment reported in the previous section (167 
hours of real time) took 36 hours of a SUN IPX with the explicit scheme on mesh STR, while with 
our method, on the same mesh, this time reduced to 12 hours. Also, as our method works as well 
on unstructured meshes, we were able to perform the simulation on the locally refined mesh 
UNSTR, with excellent results and a CPU time of 90 minutes. As an example of this gain in 
technological problems, we have recently simulated blister growth in reactor operating 
conditions, a process implying the simulation of 30 years of real time18. With the method 
presented here this simulation took 36 hours on a SPARC-10 (~80 hours of a SUN IPX) using a 
structured mesh, while with the explicit method, the same simulation would have taken 15 CPU 
days. 

The splitting carried out in our method and the way we arrive to an implicit treatment of 
diffusion can easily be understood from a physical interpretation of the system. In addition, the 
extension to many other phase-change problems is quite straightforward. The same splitting can 
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be found in the finite-difference explicit numerical method proposed by Engström et al.22 for 
diffusion of carbon in steel. There also exist semi-implicit schemes for the Stefan problem that can 
be shown to be related to the algorithm presented here13,14,23. We would like to point out that the 
essence of those algorithms can be understood from the picture we sketched in the section on the 
numerical method. 
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